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Abstract. The properties of the hulls of directed percolation clusters are studied. The scaling
and finite-size scaling of many quantities around the percolation thresholdpc are derived and
a novel Monte Carlo algorithm, which is more than twice as fast as the standard algorithm at
pc, has been formulated to study these properties. Simulations have been conducted that enable
an estimation of all the exponents involved. In particular, the central exponent,x, relating the
average hull length of clusters to their mass, has been estimated to be 0.773(4) at the percolation
threshold. This same exponent is estimated to be 0.905(5) for p < pc. Thus, this second value
should hold for directed animals.

1. Introduction

Directed percolation in two dimensions [1, 2], unsolved on any regular lattice, remains an
intriguing example of a model with critical behaviour that is simultaneously not conformally
invariant and yet apparently complex. One question that has made directed percolation to be
an object of study by several authors [3–5] has been the rationality or otherwise of its critical
exponents. Exponent rationality holds for all conformally invariant two-dimensional models
(see for example [6]). Also, a varied collection of physical problems, such as fluid flow
in porous media, epidemics, forest fires, Reggeon field theory, various chemical reactions,
and population dynamics have kept directed percolation as a canonical model of study for
the past 20 years.

Isotropic, or standard, percolation in two dimensions [7, 8] has been extensively studied
for many years and its critical behaviour is now well understood (even in the absence of
a mathematically rigorous solution). Critical exponents associated with a whole menagerie
of physical quantities have been calculated. Included in this list is the set of exponents
associated with the scaling of the standard properties, such as size and number of clusters
with the length of their external perimeters (h). Depending on its precise definition the
external perimeter is known as the hull. This scaling is in contrast to the more usual one in
terms of the mass,s (being number of sites), of the clusters. Central to this collection is the
exponent,x, that connects, via scaling relations, the exponents derived using hull lengths
and those using the mass as the basic scaling variable. It is defined by the relationship
between the average hull length of a given mass and that mass:

〈h〉 ∼ sx ass →∞ (1.1)

and it is clear that12 6 x 6 1. In fact, it attains three different values depending on whether
the concentration,p, is above, at, or below, the critical concentrationpc.
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Figure 1. A directed percolation cluster of masss = 22, hull h = 20, lengthv = 9 and width
w = 4.

In this paper we study the hull scaling exponents for directed percolation in two
dimensions. In particular we have estimated the value of the exponentx to be 0.773(4)
at p = pc. We note that this is close to the appealing rational7

9. However, for directed
problems, for which conformal invariance does not hold, there is no reason to expect
rational exponents, and past experience [9] has shown that these appealing rational fractions
are often just good approximations. In the course of our calculations we have introduced
several novel algorithms for simulating directed percolation clusters. These have a speed
advantage over the traditional method of simulation. Our results are summarized in tables 3
and 4.

This paper is organized as follows. In section 2 we define the properties to be calculated
and review their associated scaling theory. In section 3 we introduce the algorithms utilized
for our simulations. We have set out our results and commented on their accuracy and
precision in section 4, with a brief concluding summary following in section 5.

2. Definitions and scaling theory

We have considered directed site percolation on a quadrant of the square lattice seeded
from a corner as shown in figure 1. Starting from the origin one can produce a cluster by
occupying the site of the lattice at(x, t) with probability p provided either(x − 1, t − 1)
or (x, t − 1) is occupied. This produces a cluster where the origin is connected to each
occupied site by adirected path of occupied sites. The number of occupied sites in the
cluster is denoted bys (and called the mass). If an occupied site of the cluster is a perimeter
site (one adjacent to an unoccupied site) and if further it can be connected by a path of
unoccupied sites (via nearest and next-nearest neighbours) to the edge of the lattice then
it is deemed to be a hull site of the cluster. Hence, the hull is the external perimeter of
the cluster itself (whereas often in percolation theory the ‘external perimeter’ denotes the
unoccupied sites adjacent to the hull). The number of hull sites is denotedh.

We define thenormalized cluster numberas

ns(s, p) = Pr(origin∈ s-cluster)

s
(2.1)

which is identical to the definition used in isotropic percolation. Of course, in a simulation
of this directed percolation problem one would naturally estimateNs = sns as the average
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proportion of clusters produced that are of mass (size)s. The normalized hull number
nh(h, p) is defined in an analogous way. Note that in our set-up the probability of obtaining
a cluster is 1. Hence, the probability that the origin belongs to a infinite clusterP(p) satisfies

P(p)+
∞∑
s=1

sns = P(p)+
∞∑
h=1

hnh = 1. (2.2)

Canonical functions of interest are themean cluster size, S(p) and mean hull size, H(p)
which are defined as

S(p) =
∑∞

s=1 s
2ns∑∞

s=1 sns
(2.3)

and similarly

H(p) =
∑∞

h=1 h
2nh∑∞

h=1 hnh
. (2.4)

The geometricsize of the clusters are also of interest. One wants to calculate some
measure of the horizontal and vertical extent of the clusters, such as the radius of gyration.
For ease of calculation we have simply chosen to use as a measure of the vertical size,v,
the vertical length (or ‘calliper’ length) of the cluster in the variablet (that is, the value
of t for which there is at least one occupied site such that att + 1 there are no occupied
sites). For the horizontal size we have chosen the maximum width,w, of the rows of the
cluster, over all the rows of the cluster (‘calliper width’). We shall use these same symbols
to denote the averages over all clusters of masss, that is v(s, p) andw(s, p), and with
primes for averages over all clusters of particular hull lengths. Averages over all clusters
weighted by the the probability of obtaining clusters of masss or hull h are given as

V (p) =
∑∞

s=1 vsns∑∞
s=1 sns

(2.5)

and

V ′(p) =
∑∞

h=1 v
′hnh∑∞

h=1 hnh
(2.6)

respectively for the vertical size. Similar equations defineW(p) in terms ofw(s, p) and
W ′(p) in terms ofw′(s, p). The calliper length and width should also be of direct physical
interest when modelling a situation where the maximum extent of some physical process,
such as an epidemic, is important.

Of most interest is the scaling in the vicinity of the critical point. The single variable
scaling assumption for the normalized cluster numbers (see [8] and references therein) is
central to our current understanding of the behaviour of the system near the percolation
threshold and is given by

ns(s, p) ◦∼ s−τ f ((p − pc)sσ ). (2.7)

This involves the two basic exponentsτ andσ . For an exact definition of the ‘scales as’
symbol, ◦∼, see Brak and Owczarek [10]. The behaviour of the functionf (z) for large
argument must match the scaling ofns for p away frompc. The functionf (z) is non-
zero at the origin. An analogous assumption can be written down for the normalized hull
numbers as

nh(h, p) ◦∼ h−τ ′f ′((p − pc)hσ ′) (2.8)

with the same conditions onf ′.
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To connect these two forms and more precisely their exponents we use equation (1.1)
and the assumption that the number of clusters,Ns , counted by size is related to the number
of clusters,Nh, counted by hull length with the following equation:

s0∑
s=1

Ns ≈
h0∑
h=1

Nh (2.9)

whereh0 is the average hull size of clusters of masss0. That is, the number of clusters of
size6 s0 ≈ number of clusters of hull6 h0. Scaling arguments [11, 12] can then be used
to show that

2− τ
2− τ ′ =

σ

σ ′
= x. (2.10)

It is worth noting that this scaling law isdifferent to the one that holds in the case of
isotropic percolation. This is simply because in directed percolation a single realization
of the system produces a single cluster whereas in isotropic percolation it produces a
distribution of clusters. In isotropic percolation one has(1 − τ)/(1 − τ ′) = σ/σ ′ = x

which has been verified using Monte Carlo simulations [13].
The exponents associated with the other quantities we defined above are

P(p) ∼ |p − pc|β asp→ p+c (2.11)

S(p) ∼ |p − pc|γ asp→ pc (2.12)

H(p) ∼ |p − pc|γ ′ asp→ pc (2.13)

V (p) ∼ |p − pc|ν‖−β asp→ pc (2.14)

V ′(p) ∼ |p − pc|ν ′‖−β asp→ pc (2.15)

W(p) ∼ |p − pc|ν⊥−β asp→ pc (2.16)

W ′(p) ∼ |p − pc|ν ′⊥−β asp→ pc (2.17)

as functions ofp, and

v(s, pc) ∼ sν‖ ass →∞ (2.18)

v′(h, pc) ∼ hν ′‖ ash→∞ (2.19)

w(s, pc) ∼ sν⊥ ass →∞ (2.20)

w′(h, pc) ∼ hν ′⊥ ash→∞ (2.21)

as functions of the two sizes.
These exponents are not independent and should satisfy the following relations:

ν‖ = ν ′‖ (2.22)

with

ν‖ = σν‖ and ν ′‖ = σ ′ν‖ (2.23)

and hence

ν‖ = xν ′‖ (2.24)

with an analogous set forν⊥ and its relatives. Also, other scaling arguments using (2.7)
and (2.8) give

γ = 3− τ
σ

and γ ′ = 3− τ ′
σ ′

(2.25)

and

β = τ − 2

σ
= τ ′ − 2

σ ′
. (2.26)



On the hulls of directed percolation clusters 6683

2.1. Finite-size scaling

In order to extract values for the exponents defined via scaling in the concentrationp, such
as (2.11), it may be advantageous to perform a finite-size scaling analysis, and scale against
a cut-off instead. We have found it convenient and a good use of the data for the ordinary
scaling analysis to fix a cut-off in the mass, or hull length, of the clusters generated, so that
s < smax, or h < hmax respectively. We used the same data for a finite-size scaling analysis.

One can argue that for a finite system of maximum sizesmax, or hmax, that the geometric
size measures should scale with the cut-offs as

V ◦∼ smax
(ν‖−β)σ g((p − pc)smax

σ ) (2.27)

V ′ ◦∼ hmax
(ν‖−β)σ ′g′((p − pc)hmax

σ ′) (2.28)

whereg andg′ are scaling functions, and are expected to be unimodal: for large enough
‘maximum sizes’ plots ofV andV ′ are unimodal with peaks atppeak (note thatppeak is a
function of the maximum sizesmax or hmax). Hence, atp = pc, or atp = ppeak, we expect

V ∼ smax
(ν‖−β)σ (2.29)

V ′ ∼ hmax
(ν‖−β)σ ′ . (2.30)

Again there are analogous equations forW and W ′ with ν⊥ substituted forν‖. These
equations can then be used to analyse the data produced in simulations for the exponents
associated with the mean cluster length and width.

3. Generation algorithms

We have used two algorithms to generate data. The first is the canonical Markov algorithm
which treats two-dimensional directed site percolation as a one-dimensional branching
Markov process. This has been the main method used in the past, and has proved to
be simple to encode and fast on execution. To calculate the hull length, whole clusters
need to be stored and so there are more stringent memory limitations than with the usual
implementation of this algorithm. Using this algorithm and calculating the hull we were
able to simulate clusters of sizes = 217 on a DEC Alpha 250/4/266 using approximately
44 MB RAM.

However, we have developed algorithms that generate the external hull of a cluster,
and as little of the internal structure as is necessary, making them even faster though more
difficult to code. The exponentx relating mass to hull length scaling (1.1) cannot be
calculated from these simulations alone.

3.1. Hull algorithms

An algorithm for isotropic percolation that iteratively generates the external hull of a cluster
was formulated some time ago [14, 13]. We shall refer to this as the ZCS algorithm.
Because the number of hull sites scales ash ∼ sx , where 1

2 6 x < 1, one expects that in
generals � h, and hence that the time taken to generate a cluster hull is much less than that
taken to generate a full cluster. The ZCS algorithm has been used to accurately estimatepc
for isotropic site percolation [13], and confirm the values of hull exponents predicted by the
(isotropic) hull scaling law. It was natural to consider adapting the idea of this algorithm
to the case of directed percolation. However, as one can see, below this application is not
straightforward. With the addition of some extra parts though the algorithm can be adapted
to the case of directed site percolation on the square lattice.
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Figure 2. Before the walker can move to the new site it
must first check to see if a support exists (broken curve).

3.1.1. A single-walker algorithm for directed percolation hulls.We first describe the single-
walker algorithm, as its features and limitations are reflected in the two-walker algorithm
we have developed for our study. Thissingle-walkeralgorithm describes the movement of
a single walker starting from the origin, moving anticlockwise laying down the hull of the
cluster.

Adding anisotropy to the hull walker of ZCS is itself not difficult. However, it is
complicated by two features. First, the directions that the walker is allowed to move from
the current site depend upon the absolute direction just moved (rather than on only the
relative direction). Secondly, and more significantly is the fact that the hull of a directed
percolation cluster is not necessarily a directed percolation cluster itself. That is to say, in
isotropic percolation the hull is itself a cluster so the internal structure of the cluster does
not matter. Hence, the hull is independent of the internal structure so that each realization
of the hull can be achieved with the correct probability by constructing the hull alone. The
directed percolation hull structure depends upon the internal structure since all sites must be
supportedby a directed path of occupied sites from the origin to that site. To obtain each
hull with the correct probability in a simulation one must exclude internal configurations
that do not satisfy the definition of directed percolation. Practically, this means that when
the walker is about to step in certain directions (as described below), we must first test
to see if the site issupported(see figure 2). The support of the site is checked for, and
generated, by a subroutine calledorphan.

The orphan subroutine generates a tree of pseudo-occupied (not included in the cluster
definition) sites in an attempt to construct a directed path back to part of the cluster already
occupied (such as the hull). It does so by always trying to find the ‘left-most’ such path. If
it succeeds that single-directed path becomes a designated part of the directed percolation
cluster. The rest of the generated tree is inaccessible to the continuing algorithm, since
it is to the left of the path. If one were to include in the definition of the cluster the
whole generated tree this subroutine would produce non-directed percolation clusters. The
pseudosites generated are, however, required to obtain the correct probability for a given
hull. As such, this feature is both peculiar and novel but nevertheless true. A full proof
of the equality of the probabilities of generation by our algorithm, and by the definition of
directed percolation, is long and tedious. The essence of the proof utilizes the fact that any
site not visited by either algorithm can be arbitrarily designated as occupied or not so long
as the probability of doing so adds up to 1.

The single-walker algorithm generates a two-dimensional structure and naively requires
the whole square lattice on which to work, though memory management procedures such
as data blocking can be employed to alleviate this constriction. The algorithm requires four
possible site states:blank, vacant, occupied and hull. A blank site is one that has not
yet been visited by the algorithm and so could be either vacant or occupied. The orphan
routine sets occupied sites as occupied, and the single-walker sets occupied sites as hull.
For simplicity, directions from(x, t) to (x ′, t ′) will be abbreviated as in table 1.
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Table 1. Directions, their abbreviations and the translations they represent on the directed square
lattice.

Abbreviation Direction 1x 1t

dl down-left x′ = x t ′ = t + 1
dr down-right x′ = x + 1 t ′ = t + 1
ul up-left x′ = x − 1 t ′ = t − 1
ur up-right x′ = x t ′ = t − 1

Table 2. Movement table for the single-walker algorithm giving the movement preferences
(see figure 3 for an example) and the required tests for each possible previous movements (see
table 1 for abbreviations). The tests are denoted in parentheses by (b), (s) and (n). The test
(b) is whether or not the site (in that direction) is blank and then a random number generated
between 0 and 1 is less thanp; and the test (s) is whether or not the site is supported, which is
tested by the orphan subroutine. The case when a test is unnecessary is denoted by (n): true is
automatically returned.

Direction moved First Second Third Fourth

down-left dl(b) dr(b) ur(n) ◦
down-right dl(b) dr(b) ur(s) ul(n)
up-left ur(s) ul(n) ◦ ◦
up-right dr(b) ur(s) ul(n) ◦

Starting from the origin the algorithm proceeds as follows.
(I) Set the current site as the hull.
(II) Remembering the direction just moved, make the next move according to table 2.

Use the row appropriate to the direction just moved and:
(a) check to see if the first test is true (that is, the one in the first column);
(b) if the test is true proceed to (III);
(c) if otherwise set the tested site as vacant and repeat (II)(a) with the next preference

(next column).
(III) If the walker tries to move in an upward direction from the origin the algorithm

terminates, otherwise execute the move and return to (I).
Initially it is assumed that the walker has moved down-left to the origin.
On long runs, this algorithm proved to be slower than the Markov (plus hull walker) near

pc. Closer examination of generated clusters showed that the orphan routine (see figure 4)
was ‘overflowing’ when it was searching for supports. It was searching a very wide area
for supporting sites and this area was frequently found to be outside the final cluster hull
and at times it was approximately the same size as the (virtual) cluster itself. This problem
was overcome by using two walkers in parallel.

3.1.2. The dual-walker algorithmIn the dual-walker algorithm two walkers move in
tandem, with one always waiting for the other to catch up. Thus, before another step
downwards is taken both are on the same row. This avoids the overflow problem that the
single walker faced (see figure 5), as now the only area that will be searched by orphan
routines is strictly between the paths the two walkers have set, i.e. within the cluster.

Both walkers move in much the same way as the single walker described above, but
now one walker is left biased (as above), and the other is right biased. Similarly there are
two orphan routines, one left biased and the other right biased.
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Figure 3. The order preference of moves after an up-right
step for a left-biased walker.

Figure 4. The orphan routine can possibly search
anywhere between the currently defined hull and the
right-hand boundary of the lattice.

Figure 5. When there are two walkers in parallel, the
orphan routine can only search strictly inside the cluster.

Also, because there is the possibility that both walkers may be at the same site at the
same time there is atogetherwalker subroutine, to account for this:

(1) set the current site as the hull;
(2a) if there is a blank site dl, occupy it with probabilityp (set as hull) or else set it as

vacant;
(2b) if there is a blank site dr, occupy it with probabilityp (set as hull) or else set it as

vacant;
(3a) if the sites at both dl and dr have now been occupied, then return to the main part

of the dual-walker algorithm with two separate walkers;
(3b) if only one site has been occupied then move there and repeat from 1;
(3c) otherwise, there are no unoccupied sites below, and so the whole algorithm

terminates.
The dual-walker algorithm proved difficult to encode, but was faster than both the

single-walker and the Markov (plus hull walker) algorithms when simulating atpc. It was
combined with an appropriate memory management code (data blocking [13]) and used to
generate the hull-specific data which we analysed.

4. Results and discussion

The Markov and dual-walker algorithms were used to generate clusters at various values
of p and system size. One may be tempted to use data from clusters of length less than
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some cut-offL to compute exponents. However, there is a crucial loss of data; if clusters
are limited by a lengthL then the cluster numbersns , wheres > L, lose the contribution
of clusters with length greater thanL. This leads to inaccurate distributions fors > L, and
the use of ordinary scaling for analysis is then inappropriate. Instead we set the system
size in terms of the number of sites, with maximum cluster size set atsmax for the Markov
simulations, and maximum hull sizehmax for the dual-walker simulations.

The comparison of the speed of the two algorithms needs careful analysis. Since we
are looking for distributions of lengths and widths as well as hulls, we need to compare
the Markov and dual walker when they are generating the same distributions. The critical
factor in this comparison is the hull scaling exponentx. The further the value ofx is from
1, the smaller the hull of an average cluster of particular mass is, and hence the greater
the time saved by the dual-walker algorithm is. It was found that when the cut-offs were
set ashmax≈ 25 000 andsmax≈ 131 072, the algorithms generated approximately the same
distributions, but the dual-walker algorithm was about 2.5 times as fast as the Markov (plus
hull finding) algorithm.

Depending on the algorithm, for each cluster the following quantities were calculated:
• sizes, the total number of occupied sites in the cluster;
• hull h, the total number of occupied sites in the external hull as defined previously;
• ‘calliper’ length v, the maximum length of the cluster;
• ‘calliper’ width w, the maximum width of the rows of the cluster.
Using the Markov algorithm and a simple walk-around-the-hull, clusters were first

generated in full and then their hulls determined. This gave distributions of each ofs,
h, v andw. A total of 1.8× 106 clusters were generated atpc using this method up to
the cut-off of smax = 131 072, of which 1.3× 106 had mass less that the maximum. By
calculating the average hull length as a function of mass the hull scaling exponentx for
p < pc, p = pc and p > pc was estimated. The unprimed length scale exponentsν‖
and ν⊥ were also calculated. With the exponentτ found directly from the distribution of
mass, these provided a check on our analyses by allowing a comparison with recent series
estimates [5]. The dual-walker algorithm was used to generateh, v andw distributions in
a wide range ofp, with special attention paid topc. A total of 4.5× 106 clusters were
generated atpc using the dual-walker algorithm up to the cut-off ofhmax= 32 768 of which
3.3× 106 had hull less that the cut-off. For the sake of general comparison the simulation
of 105 cluster hulls atp = pc with a cut-off of hmax = 32 768 took 2.5 CPU hours on a
DEC Alpha 250/4/266.

We have performed several different analyses of the data. Ordinary scaling and finite-
size scaling relations allow us to calculate exponents by examining the behaviour of the
following distributions:
• quantity versus hull or cluster size atp = pc, using ordinary scaling such as (2.18);
• quantity peak height versus system size, using finite-size scaling such as (2.29).
In the ordinary scaling analyses, the value ofpc used was that provided by the precise

series estimate of Jensen [5], that ispc = 0.705 4853 (which is more precise than our
simulations could achieve).

4.1. Ordinary scaling analysis

From the Markov simulations data we extracted estimates of the exponentsx at pc and
x below pc, σν‖, σν⊥, and τ using ordinary scaling assumptions. From the dual-walker
simulation we calculated estimates ofσ ′ν‖, σ ′ν⊥ andτ ′. To do this we analysed the data in
several different ways. Generically we calculated local exponent estimates from (weighted)
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Figure 6. A plot of local estimates of the exponentx against 1/ log(s), with (95% confidence
interval) error-bars. The horizontal line represents our final estimate.

linear regressions on small sections of the data and then plotted these against the reciprocal
of the logarithm of the mean position of the local regression (for visual purposes only).
Fortunately our estimates seemed to converge within the range simulated and so we took a
final estimate from the (weighted) average of the last few local exponent estimates. We did
not attempt any further extrapolation. Important to this process was the determination of the
range over which the local exponent estimates were essentially constant. In figure 6 we plot
the local estimates for the exponentx obtained by first calculating the average hull length for
each value of mass from our simulations, then binning those results in logarithmically equal
bins of length1 ln(s) = 0.02, and extracting local slopes from a weighted linear regression
of disjoint contiguous sets of 20 points. In this case we used the last five points to provide
an estimate ofx. We varied the binning size and range over which the linear regressions
were calculated to test the robustness of our estimate. We utilized bin sizes of 0.02, 0.05
and 0.4 as well as simple linear bins of size 1, varying also the number of bins used in
the linear regressions so as to make the error bars reasonable. We are therefore confident
that our estimates and associated error bars represent a best estimate from the largest end
of our data. We however do not provide an independent estimate of the systematic error
but given the trend of the data this should be less than the statistical error quoted. The
exponent estimates obtained in the above way are listed in table 3.

The accuracy of our method can be gauged by considering the estimates of the mass-
based exponentsσν‖, σν⊥ and τ , noting that these were calculated from the Markov
algorithm simulations. The internal consistency of these estimates can also be gauged
by using scaling relations. One can obtain an independent estimate of the exponentx by
using relation (2.10) and the pairs of estimates forσν‖ andσ ′ν‖, andσν⊥ andσ ′ν⊥, and
finally τ and τ ′. These give 0.774(9), 0.774(10) and 0.772(14) respectively, which are
clearly consistent with our direct estimate of 0.773(4).

Below pc, at p = 0.65, the exponentx was also estimated (see table 3). This value
should be the value ofx that holds for directed animals since the larges (and soh)
behaviour of clusters are dominated by directed animals (analogous assumptions are true
for percolation: see [8]). The exponentx was also estimated abovepc at p = 0.715, and
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Table 3. Our best estimates for the exponents obtained via a standard scaling analysis of our
data.

Quantity Exponent Our estimate Series results

〈h〉(s) for p < pc x 0.905(5) uncalculated
〈h〉(s) at pc x 0.773(4) uncalculated
v(s, pc) σν‖ 0.680(5) 0.678 818(22)
w(s, pc) σν⊥ 0.431(8) 0.429 431(14)
ns(s, pc) τ 2.1077(13) 2.108 25(8)
v′(h, pc) σ ′ν‖ 0.879(4) uncalculated
w′(h, pc) σ ′ν⊥ 0.557(5) uncalculated
nh(h, pc) τ ′ 2.1395(8) uncalculated
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Figure 7. Plots of mean hull size,H , versuspc − p for various system sizes.

was found to be steadily decreasing ass became larger. Given this lack of convergence
we did not attempt to estimate the value of the exponent. However, abovepc, clusters are
expected to scale as two-dimensional objects. Consequently we expect the hull to scale as
the surface of a two-dimensional object. So we predict thatx will converge to the surface
value of 1

2 in the larges limit.

4.2. Finite-size scaling analysis

For the three quantities mean heightV ′, mean widthW ′ and average hullH calculated
from the dual-walker algorithm, we utilized their peak values to obtain exponent estimates.
Simulations were conducted in the rangep = 0.66–0.7134 at values ofp spaced in intervals
that varied from 0.0001 to 0.0005 depending on whether the simulations were in the peak
region or in the shoulders. At each point 5× 105 clusters were generated.

We first plotted each quantity for various values of cut-offhmax againstp (see, for
example, figure 7). Using a weighted quadratic fit near the peak we estimated the peak
position and value. We note here that estimates at different values ofhmax, but the same
values ofp, were correlated in this analysis (as we used the same data runs to produce the
estimates). However, our peak values were not so correlated given that the peak positions
were distinct and as simulations at different values ofp were independent.

The peak heights were calculated forhmax= (
√

2)m for m = 20, . . . ,30 and weighted
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Table 4. Our estimates for the exponents obtained via finite-size scaling (FSS) analysis of the
data. These can be compared with estimates calculated from scaling relations and our estimates
from the ordinary scaling analysis in section 4.1.

Quantity Exponent FSS estimate Scaling estimate

V ′(hmax) (ν‖ − β)σ ′ 0.72(2) 0.740(6)
W ′(hmax) (ν⊥ − β)σ ′ 0.408(12) 0.418(5)
H(hmax) γ ′σ ′ 0.85(2) 0.8605(8)

0.4

0.3

0.2

0.1

g(
z)

6543210-1
z

Collapsed Distributions

Figure 8. A plot of the scaling functiong(z) associated with the mean hullH(p;hmax) against
the variablez = hσ

′
max(p − pc). The values ofhmax used were 5000, 10 000, 20 000, 30 000.

Note that the maximum values of|p − pc|, rather thanz, for each plot were the same.

linear regression was performed over those points and subsets fixed at the large end of
the data range. There seemed to still be significant systematic trends in the data and the
statistical errors were large. Our finite-size scaling estimates, and estimates calculated from
our ordinary scaling analysis above and appropriate scaling relations, are given in table 4.

While these estimates are not as precise or stable as those obtained from the ordinary
scaling analysis, they are nevertheless consistent with them. Using the peak height exponent
estimates, we have illustrated the goodness-of-fit produced by plotting the scaling function
g(z) of the mean hullH (see figure 8) using data from different cut-offs.

5. Conclusions

This study has estimated values for the exponents associated with the scaling of the standard
properties of directed percolation cluster hulls by means of Monte Carlo simulations. We
have found an internally consistent set of values, that are also consistent with series estimates
of the mass scaling exponents: the comparison made possible by scaling relations and an
estimate of the connecting exponent,x between the two sets of exponents. Furthermore, this
connecting exponentx is close to the rational79, though we expect further analysis of this
problem to exclude this value. This is intriguing from the point of view of a possible exact
solution: its form must be unusual if the exponents are not rational. It tallies though with
other exponent values for this problem which seem also to have defied rational (fractional)
conjecture in the past.
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